Social Network Analysis Basic Concepts, Methods & Theory **University of Cologne Johannes Putzke**

Agenda

- Introduction
- Basic Concepts
- Mathematical Notation
- Network Statistics

Textbooks

- Hanneman & Riddle (2005) Introduction to Social Network Methods, available at http://faculty.ucr.edu/~hanneman/nettext/
- Wasserman & Faust (1994): Social Network Analysis Methods and Applications, Cambridge: Cambridge University Press.

Basic Concepts What is a network? **University of Cologne**

What is a Network?

- Actors / nodes / vertices / points
- Ties / edges / arcs / lines / links

What is a Network?

- Actors / nodes / vertices / points
 - Computers / Telephones
 - Persons / Employees
 - Companies / Business Units
 - Articles / Books
 - Can have properties (attributes)
- Ties / edges / arcs / lines / links

What is a Network?

Actors / nodes / vertices / points

Ties / edges / arcs / lines / links

- connect pair of actors
- types of social relations
 - friendship
 - acquaintance
 - kinship
 - advice
 - hindrance
 - sex
- allow different kind of flows
 - messages
 - money
 - diseases

What is a Social Network? - Relations among People

What is a Network? - Relations among Institutions

as institutions

- owned by, have partnership / joint venture
- purchases from, sells to
- competes with, supports
- through stakeholders
 - board interlocks
 - Previously worked for

Example 2) Homophily Theory

	Male	Female
Male	123	68
Female	95	164

- Birds of a feather flock together
- See McPherson, Smith-Lovin & Cook (2001)

	0-13	14-29	30-44	45-65	>65
0-13	212	63	117	72	91
14-29	83	372	75	67	84
30-44	105	98	321	214	117
45-65	62	72	232	412	148
>65	90	77	124	153	366

[■] age / gender → network

Managerial Relevance – Social Network...

Source: http://www.robcross.org/sna.htm

...vs. Organigram

SNA – A Recent Trend in IS Research

Example: Centrality Measures

Who is the most prominent?

Who knows the most actors?(Degree Centrality)

Who has the shortest distance to the other actors?

Who controls knowledge flows?

Example: Centrality Measures

- Who is the most prominent?
 - Who knows the most actors?
 - Who has the shortest distance to the other actors? (Closesness Centrality)
 - Who controls knowledge flows?

Example: Centrality Measures

Who is the most prominent?

Who knows the most actors

• Who has the shortest distance to the other actors?

Who controls knowledge flows?(Betweenness Centrality)

Dyads, Triads and Relations

actor

dyad

triad

friendship

kinship

- relation:
 - collection of specific ties among members of a group

Strength of a Tie

- Social network
 - finite set of actors and relation(s) defined on them
 - depicted in graph/ sociogram
 - labeled graph
- Strength of a Tie
 - dichotomous vs.

valued

depicted in valued graph or signed graph (+/-)

Strength of a Tie

- Strength of a Tie
 - nondirectional vs. directional
 - depicted in directed graphs (digraphs)
 - nodes connected by arcs
 - 3 isomorphism classes
 - null dyad
 - mutual / reciprocal / symmetrical dyad
 - asymmetric / antisymmetric dyad
 - converse of a digraph
 - reverse direction of all arcs

Reachability, Distances and Diameter

- Reachability
 - If there is a path between nodes n_i and n_i
- Geodesic
 - Shortest path between two nodes
- (Geodesic) Distance d(i,j)
 - Length of Geodesic (also called "degrees of separation")

Three different notational schemes

- 1. Graph theoretic
- 2. Sociometric
- 3. Algebraic

1. Graph Theoretic Notation

- N Actors {n₁, n₂,..., n_g}
- $n_1 \rightarrow n_i$ there is a tie between the ordered pair
- (n_i, h_i) nondirectional relation
- <n_i, n_i> directional relation
- g(g-1) number of ordered pairs in <n_i, n_j> network
- g(g-1)/2 number of ordered pairs in nondirectional network
- L collection of ordered pairs with ties {l₁,
- G graph descriped by sets (N, L)
- Simple graph has no reflexive ties, loops

<n_i, n_i>

directional

 $|_{2},...,|_{g}$

2. Sociometric Notation - From Graphs to (Adjacency/ Socio)-Matrices

Binary, undirected

Valued, directed

	1	II	III	IV	V	VI
T		2	0	0	0	0
1	0	0	4	0	0	0
Ш	0	3	0	5	4	0
IV	0	0	5	0	0	0
V	0	0	0	2	0	3
VI	0	0	0	1	4	0

2. Sociometric Notation

X g × g sociomatrix on a single relation
 g × g × R super-sociomatrix on R relations

X_R sociomatrix on relation R

■ $X_{ij(r)}$ value of tie from n_i to n_i (on relation χ_r) where i ≠ j

2. Sociometric Notation – From Matrices to Adjacency Lists and Arc Lists

Adjacency List

Different Levels of Analysis

- * Activities
- Dyad-Level
- Triad-Level
- Subset-level (cliques / subgraphs)
- Group (i.e. global) level

Measures at the Actor-Level: Measures of Prominence: Centrality and Prestige

Degree Centrality

Who knows the most actors?(Degree Centrality)

• Who has the shortest distance to the other actors?

Who controls knowledge flows?

Degree Centrality I

I II III IV V VI

1	0	1	0	0	0	0
П	0	0	-	0	0	0
Ш	0	7	0	+	1	0
IV	0	0	-	0	0	0
V	0	0	0	1	0	1
VI	0	0	0	1	0	1

0 2 2 3 1 2

- Indegree d_i(n_i)
 - Popularity, status, deference, degree prestige

$$C_{DI}(n_i) = d_I(n_i) = \sum_{j=1}^{g} x_{ji} = x_{+i}$$

- Outdegree d_o(n_i)
 - Expansiveness

$$C_{DO}(n_i) = d_o(n_i) = \sum_{j=1}^{8} x_{ij} = x_{i+1}$$

 Total degree ≡ 2 x number of edges

Marginals of adjacency matrix

Degree Centrality II

- Interpretation: opportunity to (be) influence(d)
- Classification of Nodes
 - Isolates

•
$$d_I(n_i) = d_O(n_i) = 0$$

- Transmitters
 - $d_1(n_i) = 0$ and $d_0(n_i) > 0$
- Receivers
 - $d_1(n_i) > 0$ and $d_0(n_i) = 0$
- Carriers / Ordinaries
 - $d_1(n_i) > 0$ and $d_0(n_i) > 0$

 Standardization of C_D to allow comparison across networks of different sizes: divide by ist maximum value

$$C_D'(n_i) = \frac{d(n_i)}{g-1}$$

Closeness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors? (Closesness Centrality)
- Who controls knowledge flows?

Closeness Centrality

Index of expected arrival time

$$C_C(n_i) = \frac{1}{\sum_{j=1}^g d(n_i, n_j)}$$

Reciprocal of marginals of geodesic distance matrix

- Standardize by multiplying (g-1)
- Problem: Only defined for connected graphs

Betweenness Centrality

- Who knows the most actors?
- Who has the shortest distance to the other actors?
- Who controls knowledge flows?(Betweenness Centrality)

Betweenness Centrality

How many geodesic linkings between two actors j and k contain actor i?

• $g_{jk}(n_i)/g_{jk}$ probability that distinct actor n_i "involved" in communication between two actors n_i and n_k

$$C_B(n_i) = \frac{\sum_{j < k} g_{jk}(n_i)}{g_{jk}}$$

standardized by dividing through (g-1)(g-2)/2

Several other Centrality Measures

- ...beyond the scope of this lecture
 - Status or Rank Prestige, Eigenvector Centrality
 - also reflects status or prestige of people whom actor is linked to
 - Appropriate to identify hubs (actors adjacent to many peripheral nodes) and bridges (actors adjacent to few central actors)
 - attention: more common, different meaning of bridge!!!
 - Information Centrality
 - see Wasserman & Faust (1994), p. 192 ff.
 - Random Walk Centrality
 - see Newman (2005)

Condor – Betweenness Centrality

(Actor) Contribution Index

Measures at the Group-(Global-)Level and Subgroup-Level

Diameter of a Graph and Average Geodesic Distance

- Diameter
 - Largest geodesic distance between any pair of nodes
- Average Geodesic Distance
 - How fast can information get transmitted?

Density

Proportion of ties in a graph

High density (44%)

Low density (14%)

Density

$$\Delta = \frac{L}{g(g-1)/2} = \frac{L}{\begin{pmatrix} g \\ 2 \end{pmatrix}}$$

In undirected graph:

Proportion of ties

$$\Delta = \frac{\sum_{i=1}^{s} \sum_{j=1}^{s} x_{ij}}{g(g-1)}$$

In valued directed graph:
Average strength of the arcs

Group Centralization I

- How equal are the individual actors' centrality values?
 - C_A(n_i*) actor centrality index

 - $\sum_{i=1}^{8} \left[C_A(n^*) C_A(n_i) \right]$ sum of difference between largest value and observed values
- General centralization index:

$$C_{A} = \frac{\sum_{i=1}^{g} \left[C_{A} \left(n^{*} \right) - C_{A} \left(n_{i} \right) \right]}{\max \sum_{i=1}^{g} \left[C_{A} \left(n^{*} \right) - C_{A} \left(n_{i} \right) \right]}$$

Group Centralization II

$$C_D = \frac{\sum_{i=1}^{g} \left[C_D \left(n^* \right) - C_D \left(n_i \right) \right]}{(g-1)(g-2)}$$

$$C_{C} = \frac{\sum_{i=1}^{g} \left[C_{C}'(n^{*}) - C_{C}'(n_{i}) \right]}{\left[(g-1)(g-2) \right] (2g-3)}$$

$$CB = \frac{\sum_{i=1}^{g} \left[C_B(n^*) - C_B(n_i) \right]}{(g-1)^2 (g-2)} = \frac{\sum_{i=1}^{g} \left[C_B(n^*) - C_B(n_i) \right]}{(g-1)}$$

Condor – Group Centralization

Subgroup Cohesion

 average strength of ties within the subgroup divided by average strength of ties that are from subgroup members to outsiders

■ >1 → ties in subgroup are stronger

Connectivity of Graphs and Cohesive Subgroups

Connected Graphs, Components, Cutpoints and Bridges

Connectedness

 A graph is connected if there is a path between every pair of nodes

Components

- Connected subgraphs in a graph
- Connected graph has 1 component
- Two disconnected graphs are one social network!!!

Connected Graphs, Components, Cutpoints and Bridges

- Connectivity of pairs of nodes and graphs
 - Weakly connected
 - Joined by semipath
 - Unilaterally connected
 - Path from n_i to n_i or from n_i to n_i
 - Strongly connected
 - Path from n_j to n_j and from n_j to n_j
 - Path may contain different nodes
 - Recursively Connected
 - Nodes are strongly connected and both paths use the same nodes and arcs in reverse order

Connected Graphs, Components, Cutpoints and Bridges

- Cutpoints
 - number of components in the graph that contain node n_j is fewer than number of components in subgraphs that results from deleting n_j from the graph
- Cutsets (of size k)
 - *k*-node cut
- Bridges / line cuts
 - Number of components... that contain line I_k

Node- and Line Connectivity

How vulnerable is a graph to removal of nodes or lines?

Point connectivity / Node connectivity

- Minimum number of k for which the graph has a knode cut
- For any value <k the graph is k-node-connected

Line connectivity / Edge connectivity

 Minimum number λ for which for which graph has a λ-line cut

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

- Cohesive Subgroup
 - Subset of actors among there are relatively strong, direct, intense, frequent or positive ties
- Complete Graph
 - All nodes are adjacent
- Clique
 - Maximal complete subgraph of three or more nodes
 - Cliques can overlap
 - **1**, 2, 3
 - **1**, 3, 4
 - **2**, 3, 5, 6

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

n-clique

- maximal subgraph in which $d(i,j) \le n$ for all n_i , n_i
- 2: cliques: {2, 3, 4, 5, 6} and {1, 2, 3, 4, 5}
- intermediaries in geodesics do not have to be n-clique members themselves!

n-clan

■ n-clique in which the $d(i,j) \le n$ for the subgraph of all nodes in the n-clique

2-clan: {2, 3, 4, 5, 6}

■ n-club

- maximal subgraph of diameter n
- **2**-clubs: {1, 2, 3, 4}; {1, 2, 3, 5} and {2, 3, 4, 5, 6}

Cohesive Subgroups, (n-)Cliques, n-Clans, n-Clubs, k-Plexes, k-Cores

Problem: vulnerability of n-cliques

1 3 4

- k-plexes
 - maximal subgraph in which each node is adjacent to not fewer than g_s-k nodes ("maximal": no other nodes in subgraph that also have d_s(i) ≥ (g_s-k)]
- k-cores
 - subgraph in which each node is adjacent to at least k other nodes in the subgraph

Affiliation Matrix, Bipartite Graph and Hypergraph, Rate of Participation, Size of Events

Two-mode network / affiliation network / membership network / hypernetwork

- nodes can be partitioned in two subsets
 - N (for example g persons)
 - M (for example h clubs)
- depicted in Bipartite Graph
- lines between nodes belonging to different subsets

